Extracellular norepinephrine reduces neuronal uptake of norepinephrine by oxidative stress in PC12 cells.
نویسندگان
چکیده
Cardiac norepinephrine (NE) uptake activity is reduced in congestive heart failure. Our studies in intact animals suggest that this effect on the cardiac sympathetic nerve endings is caused by oxidative stress and/or NE toxic metabolites derived from NE. In this study, we investigated the direct effects of NE on neuronal NE uptake activity and NE transporter (NET), using undifferentiated PC12 cells. Cells were incubated with NE (1-500 microM) either alone or in combination of Cu(2+) sulfate (1 microM), which promotes free radical formation by Fenton reaction for 24 h. NE uptake activity was measured using [(3)H]NE. Cell viability was determined with the use of Trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay, and cellular oxidative stress by dichlorodihydrofluorescein fluorescence and the GSH/GSSG ratio. Cell viability was reduced by NE >100 microM. At lower doses, NE produced oxidative stress and a dose-dependent reduction of NE uptake activity without affecting cell viability significantly. Cu(2+), which has no direct effect on NE uptake activity, potentiated oxidative stress and reduction of NE uptake activity produced by NE. This decrease of NE uptake activity was associated with reductions of NE uptake binding sites and NET protein expression by using the radioligand assay and Western blot analysis, but no changes in NET gene expression. In addition, the free-radical scavenger mannitol, and antioxidant enzymes superoxide dismutase and catalase, reduced oxidative stress and attenuated the reductions of NE uptake activity and NET protein produced by NE/Cu. Thus our results support a functional role of oxidative stress in mediating the neuronal NE uptake reducing effect of NE and that this effect of NE on NET is a posttranscriptional event.
منابع مشابه
Gemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress
Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is n...
متن کاملEffects of Hydrogen Peroxide Oxidative Stress on the Pattern of Pro-apoptotic and Anti-apoptotic Genes Expression During PC12 Cells Differentiation
Background and Aims:In neurodegenerative disorders,oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages which can lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions are changed during the cell differentiation that affect cell viability and differentiation. Therefore, this study was conducted to determine the effects of hyd...
متن کاملEffects of hydrogen peroxide-induced oxidative stress on the pattern of pro-apoptotic and anti-apoptotic genes expression during PC12 cells differentiation
Background and Objective: In neurodegenerative disorders, oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages that lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions were changed during cell differentiation that affect cell viability and differentiation. This study was conducted to determine the effects of hydrogen peroxi...
متن کاملNeuroprotective activity of Leontice leontopetalum extract against H2O2-stimulated oxidative stress in PC12 cells
Background and objectives: Neuronal toxicity can be induced by oxidative stress via free radicals production. In recent years, great interest has been expressed to the traditional and herbal medicines. The purpose of this study was to elucidate the neuroprotective activity of Leontice leontopetalum methanol extract against H2O2-stimulated oxidative stress in PC12 cells...
متن کاملThe effects of fatty acids of Nigella sativa seeds on apoptosis and oxidative stress induced by doxorubicin in PC12 cell line as a neuronal model
Background and objectives: Nigella sativa seeds possess anti-inflammatory, antioxidant, tranquillizer, chemoprotective and antineoplastic effects. They seeds are important nutritional flavoring agents and natural remedies for many aliments. We have investigated the protective effects of N. sativa seed fatty acids against doxorubicin. Methods: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 1 شماره
صفحات -
تاریخ انتشار 2004